Artificial Intelligence

Artificial intelligence was founded as an academic discipline in 1955. For most of its history, AI research has been divided into sub-fields that often fail to communicate with each other. These sub-fields are based on technical considerations, such as particular goals (e.g. “robotics” or “machine learning”), the use of particular tools (“logic” or artificial neural networks), or deep philosophical differences. Sub-fields have also been based on social factors (particular institutions or the work of particular researchers).

The field was founded on the assumption that human intelligence “can be so precisely described that a machine can be made to simulate it”. This raises philosophical arguments about the mind and the ethics of creating artificial beings endowed with human-like intelligence. These issues have been explored by myth, fiction and philosophy since antiquity. Some people also consider AI to be a danger to humanity if it progresses unabated. Others believe that AI, unlike previous technological revolutions, will create a risk of mass unemployment.

In the twenty-first century, AI techniques have experienced a resurgence following concurrent advances in computer power, large amounts of data, and theoretical understanding; and AI techniques have become an essential part of the technology industry, helping to solve many challenging problems in computer science, software engineering and operations research.

The traditional problems (or goals) of AI research include reasoning, knowledge representation, planning, learning, natural language processing, perception and the ability to move and manipulate objects. General intelligence is among the field’s long-term goals. Approaches include statistical methods, computational intelligence, and traditional symbolic AI. Many tools are used in AI, including versions of search and mathematical optimization, artificial neural networks, and methods based on statistics, probability and economics. The AI field draws upon computer science, information engineering, mathematics, psychology, linguistics, philosophy, and many other fields.

In computer science, artificial intelligence (AI), sometimes called machine intelligence, is intelligence demonstrated by machines, unlike the natural intelligence displayed by humans and animals.

Leading AI textbooks define the field as the study of “intelligent agents”: any device that perceives its environment and takes actions that maximize its chance of successfully achieving its goals.

Colloquially, the term “artificial intelligence” is often used to describe machines (or computers) that mimic “cognitive” functions that humans associate with the human mind, such as “learning” and “problem solving”.

As machines become increasingly capable, tasks considered to require “intelligence” are often removed from the definition of AI, a phenomenon known as the AI effect.

A quip in Tesler’s Theorem says “AI is whatever hasn’t been done yet.” For instance, optical character recognition is frequently excluded from things considered to be AI, having become a routine technology.

Modern machine capabilities generally classified as AI include successfully understanding human speech, competing at the highest level in strategic game systems (such as chess and Go), autonomously operating cars, intelligent routing in content delivery networks, and military simulations.

Applications

AI is relevant to any intellectual task. Modern artificial intelligence techniques are pervasive and are too numerous to list here. Frequently, when a technique reaches mainstream use, it is no longer considered artificial intelligence; this phenomenon is described as the AI effect.

High-profile examples of AI include autonomous vehicles (such as drones and self-driving cars), medical diagnosis, creating art (such as poetry), proving mathematical theorems, playing games (such as Chess or Go), search engines (such as Google search), online assistants (such as Siri), image recognition in photographs, spam filtering, predicting flight delays, prediction of judicial decisions, targeting online advertisements, and energy storage.

With social media sites overtaking TV as a source for news for young people and news organizations increasingly reliant on social media platforms for generating distribution, major publishers now use artificial intelligence (AI) technology to post stories more effectively and generate higher volumes of traffic.

AI can also produce Deepfakes, a content-altering technology. ZDNet reports, “It presents something that did not actually occur,” Though 88% of Americans believe Deepfakes can cause more harm than good, only 47% of them believe they can be targeted. The boom of election year also opens public discourse to threats of videos of falsified politician media.

Healthcare

AI in healthcare is often used for classification, whether to automate initial evaluation of a CT scan or EKG or to identify high-risk patients for population health. The breadth of applications is rapidly increasing. As an example, AI is being applied to the high-cost problem of dosage issues—where findings suggested that AI could save $16 billion. In 2016, a groundbreaking study in California found that a mathematical formula developed with the help of AI correctly determined the accurate dose of immunosuppressant drugs to give to organ patients.

Artificial intelligence is assisting doctors. According to Bloomberg Technology, Microsoft has developed AI to help doctors find the right treatments for cancer. There is a great amount of research and drugs developed relating to cancer. In detail, there are more than 800 medicines and vaccines to treat cancer. This negatively affects the doctors, because there are too many options to choose from, making it more difficult to choose the right drugs for the patients. Microsoft is working on a project to develop a machine called “Hanover”. Its goal is to memorize all the papers necessary to cancer and help predict which combinations of drugs will be most effective for each patient. One project that is being worked on at the moment is fighting myeloid leukemia, a fatal cancer where the treatment has not improved in decades. Another study was reported to have found that artificial intelligence was as good as trained doctors in identifying skin cancers. Another study is using artificial intelligence to try to monitor multiple high-risk patients, and this is done by asking each patient numerous questions based on data acquired from live doctor to patient interactions. One study was done with transfer learning, the machine performed a diagnosis similarly to a well-trained ophthalmologist, and could generate a decision within 30 seconds on whether or not the patient should be referred for treatment, with more than 95% accuracy.

According to CNN, a recent study by surgeons at the Children’s National Medical Center in Washington successfully demonstrated surgery with an autonomous robot. The team supervised the robot while it performed soft-tissue surgery, stitching together a pig’s bowel during open surgery, and doing so better than a human surgeon, the team claimed. IBM has created its own artificial intelligence computer, the IBM Watson, which has beaten human intelligence (at some levels). Watson has struggled to achieve success and adoption in healthcare.

Automotive

Advancements in AI have contributed to the growth of the automotive industry through the creation and evolution of self-driving vehicles. As of 2016, there are over 30 companies utilizing AI into the creation of self-driving cars. A few companies involved with AI include Tesla, Google, and Apple.

Many components contribute to the functioning of self-driving cars. These vehicles incorporate systems such as braking, lane changing, collision prevention, navigation and mapping. Together, these systems, as well as high-performance computers, are integrated into one complex vehicle.

Recent developments in autonomous automobiles have made the innovation of self-driving trucks possible, though they are still in the testing phase. The UK government has passed legislation to begin testing of self-driving truck platoons in 2018. Self-driving truck platoons are a fleet of self-driving trucks following the lead of one non-self-driving truck, so the truck platoons aren’t entirely autonomous yet. Meanwhile, the Daimler, a German automobile corporation, is testing the Freightliner Inspiration which is a semi-autonomous truck that will only be used on the highway.[304]

One main factor that influences the ability for a driverless automobile to function is mapping. In general, the vehicle would be pre-programmed with a map of the area being driven. This map would include data on the approximations of street light and curb heights in order for the vehicle to be aware of its surroundings. However, Google has been working on an algorithm with the purpose of eliminating the need for pre-programmed maps and instead, creating a device that would be able to adjust to a variety of new surroundings.[305] Some self-driving cars are not equipped with steering wheels or brake pedals, so there has also been research focused on creating an algorithm that is capable of maintaining a safe environment for the passengers in the vehicle through awareness of speed and driving conditions.[306]

Another factor that is influencing the ability of a driverless automobile is the safety of the passenger. To make a driverless automobile, engineers must program it to handle high-risk situations. These situations could include a head-on collision with pedestrians. The car’s main goal should be to make a decision that would avoid hitting the pedestrians and saving the passengers in the car. But there is a possibility the car would need to make a decision that would put someone in danger. In other words, the car would need to decide to save the pedestrians or the passengers.[307] The programming of the car in these situations is crucial to a successful driverless automobile.

Finance and economics
Financial institutions have long used artificial neural network systems to detect charges or claims outside of the norm, flagging these for human investigation. The use of AI in banking can be traced back to 1987 when Security Pacific National Bank in the US set-up a Fraud Prevention Task force to counter the unauthorized use of debit cards.[308] Programs like Kasisto and Moneystream are using AI in financial services.

Banks use artificial intelligence systems today to organize operations, maintain book-keeping, invest in stocks, and manage properties. AI can react to changes overnight or when business is not taking place.[309] In August 2001, robots beat humans in a simulated financial trading competition.[310] AI has also reduced fraud and financial crimes by monitoring behavioral patterns of users for any abnormal changes or anomalies.[311][312][313]

AI is increasingly being used by corporations. Jack Ma has controversially predicted that AI CEO’s are 30 years away.[314][315]

The use of AI machines in the market in applications such as online trading and decision making has changed major economic theories.[316] For example, AI-based buying and selling platforms have changed the law of supply and demand in that it is now possible to easily estimate individualized demand and supply curves and thus individualized pricing. Furthermore, AI machines reduce information asymmetry in the market and thus making markets more efficient while reducing the volume of trades[citation needed]. Furthermore, AI in the markets limits the consequences of behavior in the markets again making markets more efficient[citation needed]. Other theories where AI has had impact include in rational choice, rational expectations, game theory, Lewis turning point, portfolio optimization and counterfactual thinking[citation needed].. In August 2019, the AICPA introduced an AI training course for accounting professionals.[317]

Cybersecurity

This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (January 2020) (Learn how and when to remove this template message)
The cybersecurity arena faces significant challenges in the form of large-scale hacking attacks of different types that harm organizations of all kinds and create billions of dollars in business damage. Artificial intelligence and Natural Language Processing (NLP) has begun to be used by security companies – for example, SIEM (Security Information and Event Management) solutions. The more advanced of these solutions use AI and NLP to automatically sort the data in networks into high risk and low-risk information. This enables security teams to focus on the attacks that have the potential to do real harm to the organization, and not become victims of attacks such as Denial of Service (DoS), Malware and others.

Government
Main article: Artificial intelligence in government
Artificial intelligence in government consists of applications and regulation. Artificial intelligence paired with facial recognition systems may be used for mass surveillance. This is already the case in some parts of China.[318][319] Artificial intelligence has also competed in the Tama City mayoral elections in 2018.

In 2019, the tech city of Bengaluru in India is set to deploy AI managed traffic signal systems across the 387 traffic signals in the city. This system will involve use of cameras to ascertain traffic density and accordingly calculate the time needed to clear the traffic volume which will determine the signal duration for vehicular traffic across streets.[320]

Law-related professions
Main article: Legal informatics § Artificial intelligence
Artificial intelligence (AI) is becoming a mainstay component of law-related professions. In some circumstances, this analytics-crunching technology is using algorithms and machine learning to do work that was previously done by entry-level lawyers.[citation needed]

In Electronic Discovery (eDiscovery), the industry has been focused on machine learning (predictive coding/technology assisted review), which is a subset of AI. To add to the soup of applications, Natural Language Processing (NLP) and Automated Speech Recognition (ASR) are also in vogue in the industry.[321]

Video games
Main article: Artificial intelligence (video games)
In video games, artificial intelligence is routinely used to generate dynamic purposeful behavior in non-player characters (NPCs). In addition, well-understood AI techniques are routinely used for pathfinding. Some researchers consider NPC AI in games to be a “solved problem” for most production tasks. Games with more atypical AI include the AI director of Left 4 Dead (2008) and the neuroevolutionary training of platoons in Supreme Commander 2 (2010).[322][323]

Military
Further information: Artificial intelligence arms race, Lethal autonomous weapon, and Unmanned combat aerial vehicle
The United States and other nations are developing AI applications for a range of military functions.[324] The main military applications of Artificial Intelligence and Machine Learning are to enhance C2, Communications, Sensors, Integration and Interoperability.[325] AI research is underway in the fields of intelligence collection and analysis, logistics, cyber operations, information operations, command and control, and in a variety of semiautonomous and autonomous vehicles.[324] Artificial Intelligence technologies enable coordination of sensors and effectors, threat detection and identification, marking of enemy positions, target acquisition, coordination and deconfliction of distributed Join Fires between networked combat vehicles and tanks also inside Manned and Unmanned Teams (MUM-T).[325] AI has been incorporated into military operations in Iraq and Syria.[324]

Worldwide annual military spending on robotics rose from US$5.1 billion in 2010 to US$7.5 billion in 2015.[326][327] Military drones capable of autonomous action are widely considered a useful asset.[328] Many artificial intelligence researchers seek to distance themselves from military applications of AI.[329]

Hospitality
In the hospitality industry, Artificial Intelligence based solutions are used to reduce staff load and increase efficiency[330] by cutting repetitive tasks frequency, trends analysis, guest interaction, and customer needs prediction.[331] Hotel services backed by Artificial Intelligence are represented in the form of a chatbot,[332] application, virtual voice assistant and service robots.

Audit
For financial statements audit, AI makes continuous audit possible. AI tools could analyze many sets of different information immediately. The potential benefit would be the overall audit risk will be reduced, the level of assurance will be increased and the time duration of audit will be reduced.[333]

Advertising
It is possible to use AI to predict or generalize the behavior of customers from their digital footprints in order to target them with personalized promotions or build customer personas automatically.[334] A documented case reports that online gambling companies were using AI to improve customer targeting.[335]

Moreover, the application of Personality computing AI models can help reduce the cost of advertising campaigns by adding psychological targeting to more traditional sociodemographic or behavioral targeting.[336]

Art
Further information: Computer art
Artificial Intelligence has inspired numerous creative applications including its usage to produce visual art. The exhibition “Thinking Machines: Art and Design in the Computer Age, 1959–1989” at MoMA[337] provides a good overview of the historical applications of AI for art, architecture, and design. Recent exhibitions showcasing the usage of AI to produce art include the Google-sponsored benefit and auction at the Gray Area Foundation in San Francisco, where artists experimented with the DeepDream algorithm[338] and the exhibition “Unhuman: Art in the Age of AI,” which took place in Los Angeles and Frankfurt in the fall of 2017.[339][340] In the spring of 2018, the Association of Computing Machinery dedicated a special magazine issue to the subject of computers and art highlighting the role of machine learning in the arts.[341] The Austrian Ars Electronica and Museum of Applied Arts, Vienna opened exhibitions on AI in 2019.[342][343] The Ars Electronica’s 2019 festival “Out of the box” extensively thematized the role of arts for a sustainable societal transformation with AI.[344]